Full Lenght Article
Impulse Differential Equations of Environmental Problems

Under a Creative Commons license
Open Access

Abstract

When the number of microorganisms reaches a certain amount,  say, when they reach a certain number, the number of deaths will increase sharply in a short period of time. If the number of deaths is a fraction of the number of living organisms, then the law of change in the number of organisms in a colony

Keywords

Differential equation with impulse effect
Cauchy problem
Malthus model
growth rate
Ferxulsta-Perla model
logistic curve.

Declarations

Conflict of Interest Statement

The author (s) declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Andronov A. A., Witt A. A., Haykin S. E. The theory of kuebaniy.
–M .: Nauka, 1981. p.568.
2. Boguyubov N. N., Mitropuskiy YU. A. Asymptotic methods v teorii nelineynix kuebaniy. –M .: Fizmatgiz, 1963. p. 410.
3. Krasnoselskiy M.A. The sdviga operator on trajectories differential level. –M .: Nauka, 1966. p. 332.
4. Krasnoselskiy M.A., Vaynikko G.M., Zabreyko P.P. and dr. Priblijennoe reshenie operatornix uravdaniy. –M .: Nauka, 1969. p. 300.
5. Krilov N.M., Boguyubov N.N. Introduction to nonlinear mechanics. Kiev, AN USSR, 1937. p. 364. ¬
6. Lando YU.K. Kraevaya zadacha for lineynix integro-differentialnix uravdaniy Fredguma vtorogo roda. Izv. AN BSSR, ser. phys. Techn. Science. №4. 1960. p. 11-21.
7. Mitropuskiy YU.A. Method usreddaniya v nelineynoy mechanics.–Kiev, “Naukova dumka”, 1971. p. 440.
8. Mishkis A.D. The basic theorems of theories of obiknovennix differential uravdaniy v neklassicheskix sluchayax. First letnyaya matematicheskaya shkua. –Kiev, “Naukova dumka”, 1964.

Bibliographic Information

Verify authenticity via CrossMark

Cite this article as:

Ataxanovna, Y. H. ., & Gulomovich, R. S. . (2021). Impulse Differential Equations of Environmental Problems. International Journal of Culture and Modernity, 9, 44–50. Retrieved from https://ijcm.academicjournal.io/index.php/ijcm/article/view/74
  • Submitted
    17 October 2021
  • Revised
    17 October 2021
  • Published
    17 October 2021